import torch from transformers import AutoModel, AutoProcessor from PIL import Image, UnidentifiedImageError import requests from io import BytesIO import time # Configuration MODEL_ID = "TomoroAI/tomoro-colqwen3-embed-4b" DTYPE = torch.bfloat16 # DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # DEVICE = "cuda" DEVICE = "cpu" # Load Model & Processor processor = AutoProcessor.from_pretrained( MODEL_ID, trust_remote_code=True, max_num_visual_tokens=1280, ) model = AutoModel.from_pretrained( MODEL_ID, dtype=DTYPE, attn_implementation="flash_attention_2", trust_remote_code=True, device_map=DEVICE, ).eval() # Sample Data queries = [ "Retrieve the city of Singapore", "Retrieve the city of Beijing", "Retrieve the city of London", ] docs = [ "https://upload.wikimedia.org/wikipedia/commons/2/27/Singapore_skyline_2022.jpg", "https://upload.wikimedia.org/wikipedia/commons/6/61/Beijing_skyline_at_night.JPG", "https://upload.wikimedia.org/wikipedia/commons/4/49/London_skyline.jpg", ] def load_image(url: str) -> Image.Image: # Some CDNs (e.g., Wikimedia) expect a browser-like UA to avoid 403s. for headers in ({}, {"User-Agent": "Mozilla/5.0 (compatible; ColQwen3-demo/1.0)"}): resp = requests.get(url, headers=headers, timeout=10) if resp.status_code == 403: continue resp.raise_for_status() try: return Image.open(BytesIO(resp.content)).convert("RGB") except UnidentifiedImageError as e: raise RuntimeError(f"Failed to decode image from {url}") from e raise RuntimeError(f"Could not fetch image (HTTP 403) from {url}; try downloading locally and loading from file path.") # Helper Functions def encode_queries(texts, batch_size=8): outputs = [] for start in range(0, len(texts), batch_size): batch = processor.process_texts(texts=texts[start : start + batch_size]) batch = {k: v.to(DEVICE) for k, v in batch.items()} with torch.inference_mode(): out = model(**batch) vecs = out.embeddings.to(torch.bfloat16).cpu() outputs.extend(vecs) return outputs def encode_docs(urls): outputs = [] for idx, url in enumerate(urls): img = load_image(url) features = processor.process_images(images=[img]) features = {k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v for k, v in features.items()} # Warm up on the first image, measure only 2nd and 3rd embeddings generation if idx in (1, 2): start_ns = time.perf_counter_ns() with torch.inference_mode(): out = model(**features) vecs = out.embeddings.to(torch.bfloat16).cpu() end_ns = time.perf_counter_ns() duration_ns = end_ns - start_ns print(f"Duration encode_docs image {idx + 1}: {duration_ns:,} ns") else: with torch.inference_mode(): out = model(**features) vecs = out.embeddings.to(torch.bfloat16).cpu() outputs.extend(vecs) return outputs # Execution query_embeddings = encode_queries(queries) doc_embeddings = encode_docs(docs) # MaxSim Scoring scores = processor.score_multi_vector(query_embeddings, doc_embeddings) print(scores)