Compare commits

..

3 Commits

Author SHA1 Message Date
llm
0a10f926c1 Timing analysis for the separate processing steps, also GPU -> CPU transfer 2025-12-14 11:02:12 +01:00
llm
8ffd5dd122 PyTorch experiments 2025-12-13 22:50:19 +01:00
llm
4d25d9c679 For AI embedding model timing checks 2025-12-13 22:28:55 +01:00
2 changed files with 255 additions and 0 deletions

View File

@@ -0,0 +1,160 @@
import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image, UnidentifiedImageError
import requests
from io import BytesIO
import time
# Configuration
MODEL_ID = "TomoroAI/tomoro-colqwen3-embed-4b"
DTYPE = torch.bfloat16
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# DEVICE = "cpu"
DEVICE = "cuda"
print(f"DEVICE: {DEVICE}")
# Load Model & Processor
start_ts = time.perf_counter_ns()
processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
max_num_visual_tokens=1280,
)
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration Load Processor: {duration_ns:,} ns")
start_ts = time.perf_counter_ns()
model = AutoModel.from_pretrained(
MODEL_ID,
dtype=DTYPE,
attn_implementation="flash_attention_2",
# attn_implementation="sdpa",
trust_remote_code=True,
device_map=DEVICE,
).eval()
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration Load Model: {duration_ns:,} ns")
total_params = sum(p.numel() for p in model.parameters())
print(f"Model total_params: {total_params:,}")
# Sample Data
queries = [
"Retrieve a city of Singapore picture",
"Retrieve a city of Beijing picture",
"Retrieve a city of London picture",
"Retrieve a city of Frankfurt am Main picture",
"Retrieve a city of Berlin picture",
# "Retrieve a city of Madrid picture",
# "Retrieve a city of Budapest picture",
# "Retrieve a city of Dresden picture",
# "Retrieve a city of New York picture",
# "Retrieve a city of Sydney picture",
# "Retrieve a city of Toronto picture",
# "Retrieve a city of Asunción picture",
]
docs = [
"https://upload.wikimedia.org/wikipedia/commons/2/27/Singapore_skyline_2022.jpg",
"https://upload.wikimedia.org/wikipedia/commons/6/61/Beijing_skyline_at_night.JPG",
"https://upload.wikimedia.org/wikipedia/commons/4/49/London_skyline.jpg",
"https://upload.wikimedia.org/wikipedia/commons/d/d7/Skyline_Frankfurt_am_Main_2015.jpg",
"https://upload.wikimedia.org/wikipedia/commons/8/83/Cityscape_Berlin.jpg",
# Decoding errors:
# "https://commons.wikimedia.org/wiki/File:Sydney_skyline_at_dusk_-_Dec_2008.jpg",
# "https://commons.wikimedia.org/wiki/File:Toronto_-_ON_-_Toronto_Skyline8.jpg",
# "https://commons.wikimedia.org/wiki/File:Asunci%C3%B3n_Paraguay.jpg",
# "https://commons.wikimedia.org/wiki/File:Madrid_ciudad.jpg",
# "https://commons.wikimedia.org/wiki/File:Budapest,_Hungary_(explored)_(14995308504).jpg",
# "https://commons.wikimedia.org/wiki/File:DD-canaletto-blick.jpg",
# "https://commons.wikimedia.org/wiki/File:Long_Island_City_New_York_May_2015_panorama_3.jpg",
]
def load_image(url: str) -> Image.Image:
# Some CDNs (e.g., Wikimedia) expect a browser-like UA to avoid 403s.
for headers in ({}, {"User-Agent": "Mozilla/5.0 (compatible; ColQwen3-demo/1.0)"}):
resp = requests.get(url, headers=headers, timeout=10)
if resp.status_code == 403:
continue
resp.raise_for_status()
try:
return Image.open(BytesIO(resp.content)).convert("RGB")
except UnidentifiedImageError as e:
raise RuntimeError(f"Failed to decode image from {url}") from e
raise RuntimeError(f"Could not fetch image (HTTP 403) from {url}; try downloading locally and loading from file path.")
# Helper Functions
def encode_queries(texts, batch_size=8):
outputs = []
for start in range(0, len(texts), batch_size):
batch = processor.process_texts(texts=texts[start : start + batch_size])
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.inference_mode():
out = model(**batch)
vecs = out.embeddings.to(torch.bfloat16).cpu()
outputs.extend(vecs)
return outputs
def encode_docs(urls, batch_size=4):
pil_images = [load_image(url) for url in urls]
outputs = []
for start in range(0, len(pil_images), batch_size):
batch_imgs = pil_images[start : start + batch_size]
start_ts = time.perf_counter_ns()
features = processor.process_images(images=batch_imgs)
features = {
k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v
for k, v in features.items()
}
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration process_images: {duration_ns:,} ns")
with torch.inference_mode():
start_ts = time.perf_counter_ns()
out = model(**features)
vecs = out.embeddings.to(torch.bfloat16).cpu()
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration vecs generation (no .cpu): {duration_ns:,} ns")
start_ts = time.perf_counter_ns()
vecs = vecs.cpu()
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration vecs.cpu()): {duration_ns:,} ns")
if False:
print(f"type(out.embeddings) = {type(out.embeddings)}")
print(f"out.embeddings.shape = {out.embeddings.shape}")
print(f"out.embeddings.ndim = {out.embeddings.ndim}")
print(f"out.embeddings.device = {out.embeddings.device}")
print(f"out.embeddings.numel() = {out.embeddings.numel()}")
print("out.embeddings.element_size() = "
f"{out.embeddings.element_size()}")
print("out.embeddings.numel() * out.embeddings.element_size() = "
f"{out.embeddings.numel() * out.embeddings.element_size()}")
outputs.extend(vecs)
return outputs
# Execution
start_ts = time.perf_counter_ns()
query_embeddings = encode_queries(queries)
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration encode_queries: {duration_ns:,} ns")
start_ts = time.perf_counter_ns()
doc_embeddings = encode_docs(docs)
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration encode_docs: {duration_ns:,} ns")
# MaxSim Scoring
start_ts = time.perf_counter_ns()
scores = processor.score_multi_vector(query_embeddings, doc_embeddings)
duration_ns = time.perf_counter_ns() - start_ts
print(f"Duration score_multi_vector: {duration_ns:,} ns")
print(scores)

View File

@@ -0,0 +1,95 @@
import torch
from transformers import AutoModel, AutoProcessor
from PIL import Image, UnidentifiedImageError
import requests
from io import BytesIO
import time
# Configuration
MODEL_ID = "TomoroAI/tomoro-colqwen3-embed-4b"
DTYPE = torch.bfloat16
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# DEVICE = "cuda"
DEVICE = "cpu"
# Load Model & Processor
processor = AutoProcessor.from_pretrained(
MODEL_ID,
trust_remote_code=True,
max_num_visual_tokens=1280,
)
model = AutoModel.from_pretrained(
MODEL_ID,
dtype=DTYPE,
attn_implementation="flash_attention_2",
trust_remote_code=True,
device_map=DEVICE,
).eval()
# Sample Data
queries = [
"Retrieve the city of Singapore",
"Retrieve the city of Beijing",
"Retrieve the city of London",
]
docs = [
"https://upload.wikimedia.org/wikipedia/commons/2/27/Singapore_skyline_2022.jpg",
"https://upload.wikimedia.org/wikipedia/commons/6/61/Beijing_skyline_at_night.JPG",
"https://upload.wikimedia.org/wikipedia/commons/4/49/London_skyline.jpg",
]
def load_image(url: str) -> Image.Image:
# Some CDNs (e.g., Wikimedia) expect a browser-like UA to avoid 403s.
for headers in ({}, {"User-Agent": "Mozilla/5.0 (compatible; ColQwen3-demo/1.0)"}):
resp = requests.get(url, headers=headers, timeout=10)
if resp.status_code == 403:
continue
resp.raise_for_status()
try:
return Image.open(BytesIO(resp.content)).convert("RGB")
except UnidentifiedImageError as e:
raise RuntimeError(f"Failed to decode image from {url}") from e
raise RuntimeError(f"Could not fetch image (HTTP 403) from {url}; try downloading locally and loading from file path.")
# Helper Functions
def encode_queries(texts, batch_size=8):
outputs = []
for start in range(0, len(texts), batch_size):
batch = processor.process_texts(texts=texts[start : start + batch_size])
batch = {k: v.to(DEVICE) for k, v in batch.items()}
with torch.inference_mode():
out = model(**batch)
vecs = out.embeddings.to(torch.bfloat16).cpu()
outputs.extend(vecs)
return outputs
def encode_docs(urls):
outputs = []
for idx, url in enumerate(urls):
img = load_image(url)
features = processor.process_images(images=[img])
features = {k: v.to(DEVICE) if isinstance(v, torch.Tensor) else v for k, v in features.items()}
# Warm up on the first image, measure only 2nd and 3rd embeddings generation
if idx in (1, 2):
start_ns = time.perf_counter_ns()
with torch.inference_mode():
out = model(**features)
vecs = out.embeddings.to(torch.bfloat16).cpu()
end_ns = time.perf_counter_ns()
duration_ns = end_ns - start_ns
print(f"Duration encode_docs image {idx + 1}: {duration_ns:,} ns")
else:
with torch.inference_mode():
out = model(**features)
vecs = out.embeddings.to(torch.bfloat16).cpu()
outputs.extend(vecs)
return outputs
# Execution
query_embeddings = encode_queries(queries)
doc_embeddings = encode_docs(docs)
# MaxSim Scoring
scores = processor.score_multi_vector(query_embeddings, doc_embeddings)
print(scores)