Pod and python for text embedding with colnomic-embed-multimodal-7b.py

This commit is contained in:
llm
2025-11-21 17:01:49 +01:00
commit ad39e7c5c7
2 changed files with 380 additions and 0 deletions

View File

@@ -0,0 +1,166 @@
#!/usr/bin/env python
import os
from typing import List
import torch
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers.utils.import_utils import is_flash_attn_2_available
from colpali_engine.models import ColQwen2_5, ColQwen2_5_Processor
HF_MODEL_ID = os.environ.get("HF_MODEL_ID", "nomic-ai/colnomic-embed-multimodal-7b")
HF_MODEL_URL = os.environ.get("HF_MODEL_URL")
API_PORT = int(os.environ.get("PYTORCH_CONTAINER_PORT", os.environ.get("PORT", "8000")))
app = FastAPI(title="Colnomic Embed Multimodal 7B API")
_model = None
_processor = None
_device = None
def _ensure_model_loaded():
"""
Lazy-load the ColNomic model and processor on first request.
Hard requirements for this deployment:
- CUDA must be available.
- FlashAttention-2 must be available (flash-attn successfully installed).
If either is missing, an exception is raised and /health returns 500.
"""
global _model, _processor, _device
if _model is not None and _processor is not None:
return _model, _processor, _device
if not torch.cuda.is_available():
raise RuntimeError("CUDA is not available; a CUDA-capable GPU is required.")
if not is_flash_attn_2_available():
raise RuntimeError("flash_attn_2 is not available; please install compatible libraries.")
# Choose dtype: BF16 if supported, otherwise FP16
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
# Use a single GPU (cuda:0) for now.
device_map = "cuda:0"
# Force FlashAttention-2 (we already checked availability above).
attn_impl = "flash_attention_2"
model = ColQwen2_5.from_pretrained(
HF_MODEL_ID,
torch_dtype=dtype,
device_map=device_map,
attn_implementation=attn_impl,
).eval()
processor = ColQwen2_5_Processor.from_pretrained(HF_MODEL_ID)
_model = model
_processor = processor
_device = device_map
return _model, _processor, _device
class EmbedRequest(BaseModel):
texts: List[str]
class EmbedResponse(BaseModel):
model_id: str
# results[batch][tokens][dim]
results: List[List[List[float]]]
@app.get("/health")
def health():
"""
Health check:
- Reports CUDA and FlashAttention-2 availability.
- Tries to load the model once (lazy).
- Returns 200 only if CUDA, FlashAttention-2 and model loading are OK.
"""
cuda_ok = bool(torch.cuda.is_available())
flash_ok = bool(is_flash_attn_2_available())
info = {
"status": "ok",
"model_id": HF_MODEL_ID,
"model_url": HF_MODEL_URL,
"cuda_available": cuda_ok,
"flash_attn_2_available": flash_ok,
}
# CUDA or FlashAttention missing -> hard failure
if not cuda_ok:
info["status"] = "error"
info["error"] = "CUDA is not available inside the container."
raise HTTPException(status_code=500, detail=info)
if not flash_ok:
info["status"] = "error"
info["error"] = "flash_attn_2 is not available; this deployment requires FlashAttention-2."
raise HTTPException(status_code=500, detail=info)
try:
_ensure_model_loaded()
except Exception as exc: # noqa: BLE001
info["status"] = "error"
info["error"] = str(exc)
raise HTTPException(status_code=500, detail=info) from exc
return info
@app.post("/embed", response_model=EmbedResponse)
def embed(request: EmbedRequest):
"""
Compute multi-vector embeddings for a list of texts.
Result shape: results[batch][tokens][dim] (multi-vector per text).
"""
if not request.texts:
raise HTTPException(status_code=400, detail="texts must not be empty")
model, processor, device = _ensure_model_loaded() # noqa: F841 - device kept for future use
# For queries, use process_queries (as in ColQwen2.5 docs)
with torch.inference_mode():
batch = processor.process_queries(request.texts).to(model.device)
outputs = model(**batch)
# ColQwen2.5 returns either:
# - a tensor shaped (batch, tokens, dim), or
# - an object with .last_hidden_state
if isinstance(outputs, torch.Tensor):
embeddings = outputs
elif hasattr(outputs, "last_hidden_state"):
embeddings = outputs.last_hidden_state
else:
raise HTTPException(
status_code=500,
detail=f"Unexpected model output type from ColQwen/ColPali: {type(outputs)}",
)
if embeddings.dim() == 2: # (tokens, dim) -> single text
embeddings = embeddings.unsqueeze(0)
elif embeddings.dim() != 3:
raise HTTPException(
status_code=500,
detail=f"Unexpected embedding shape: {tuple(embeddings.shape)}",
)
embeddings = embeddings.detach().cpu().float()
results = embeddings.tolist()
return EmbedResponse(model_id=HF_MODEL_ID, results=results)
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=API_PORT)